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1. Introduction.

Given T joint observations on K variables, it is

frequently useful to consider the weighted average or

scaled score:

Yt= EkXtkwk t = 1,,T
In matrix notation,

y = xw = XWe (1)

In expression (1),

X = a TxK data matrix to be scaled (the input);

y = a column vector of T scaled scores (the output);

w = a column vector of K weights;

e = a column vector of K units (1's); and

W = a KxK diagonal matrix whose nonzero elements

are the weights (w = We).

This paper introduces L-scaling as a technique for

determining the weights. The technique is so called

because of its formal resemblance to the Leontief

matrix of mathematical economics. L-scaling is compared

to several widely-used procedures for data reduction,

but no attempt is made to survey the voluminous

literature on scaling methods. The discussion proceeds

in terms of descriptive statistics since the various

techniques have sampling properties that are either

unknown or intractable.

To deal with the "apples and oranges" problem that

arises in scaling incommensurable variables, it is

assumed that the data have been standardized. That is,

R = X'X (2)
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is a correlation matrix of order K. An additional

assumption is that the K variables are not perfectly

correlated: the rank of R exceeds 1. In applications,

the rank of R is usually the smaller of T and K since

there is unlikely to be an exact linear relationship

among the variables.

2. L-scaling.

Because the variables are imperfectly correlated,

there are potentially TxK discrepancies between the

weighted average y and its components XW. In view of

expression (1), L-scaling defines such a discrepancy as

Xtkwk yt/K. In matrix notation, the TxK discrepancy

matrix is

D = XW - ye'/K

= XW - XWee'/K from (1)

= XW(I - ee'/K) (3)

where I is the identity matrix of order K. L-scaling

chooses the weights to minimize the sum of the

squared discrepancies. In other words, the weights

minimize the trace (tr) of D'D, just the sum of that

matrix's diagonal elements:

tr(D'D) = trUXW(I ee'/K)]'[XW(I - ee'/K)])

= tr(XW(I - ee'/K)][XW(I - ee'/K)]') (4)

since in general tr(PQ) = tr(QP) for conformable

matrices. Moreover, (I - eel/K) is an idempotent

matrix, so expression (4) becomes

tr(D'D) = tr[XW(I - ee'/K)WX'] (5)

5
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In expression (5), the t-th diagonal element of the

bracketed matrix is
2 2

EXtkwk (1/1022XtjXtkwjwk (6)

where the summations over j and k run from 1 to K.

Since the X data are standardized, it follows from

expression (6) that the L-scaling minimand is

tr(D'D) = vis(I - R/K)w (7)

where R is defined in expression (2) and w = We is the

column vector of K weights.

To avoid the trivial solution (w = 0), expression

(7) must be minimized subject to a normalization of the

weights. L-scaling adopts the constraint that the

weights should add to 1:

w'e = 1 (8)

Whether the constrained minimum is unique depends

on the rank of (I - R/K) = (KI R)/K. The matrix is

evidently singular if and only if K is an eigenvalue of

R. But then the rank of R is 1, contrary to assumption;

and the K variables collapse to a single variable.

Barring this, the rank of R exceeds 1, the inverse of

(I R/K) exists, and the L-scaling minimum is unique.

This conclusion is valid whether or not T ? K and even

if some (but not all) of the X variables are linearly

dependent.

When the quadratic form (7) is minimized with

respect to w and subject to the normalizing constraint

(8), the L-scaling weights are

w = c(I - (8)
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In expression (9), the positive constant

c = 1/e'(I - R/K)-le (10)

makes the weights add to 1. In addition, c is the value

of the quadratic form (7) at its constrained minimum.

Substitution of the weights into expression (1)

produces the scaled scores y.

3. L-scaling and the Leontief matrix.

In many applications of scaling, all the

correlations are positive; in other words, the K

variables tend to rise and fall together. While

L-scaling can certainly be applied in other

situations, it will be assumed from now on that R is a

positive matrix.

In that case, the array (I - R/K) bears a formal

resemblance to the Leontief matrix that has a prominent

role in the theory of linear economic models. Such

matrices are positive definite. Moreover, they have

positive elements on the principal diagonal and

negative elements elsewhere. Hawkins and Simon

(Ref. 1) show that these properties guarantee a

strictly positive inverse:

(I - R/K)-1 > 0 . (11)

It follows from expressions (9) and (10) that the

L-Lcaling weigh'es are also strictly positive.

Blankmeyer (Ref. 2) gives a concise proof of the

Hawkins-Simon result.

Waugh (Ref. 3) shows that the Leontief inverse can
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be expanded in power series. For L-scaling the

expansion is, apart from the factor c,

y = X(I - R/K)-le = Xe + XRe/K XR2e/K2 +

XRne/Kn , (12)

where n is an integer greater than 2. The sequence

converges since Re/X < e.

The first term in the sequence is Xe, just the row

totals of the data matrix. The n-th term in the

sequence approximates the largest eigenvector of R if n

is a large integer. Accordingly, the L-scaling solution

subsumes two well-known scaling techniques: simple row

means and the first principal component of the

correlation matrix. The relationships among these

scaling methods are further developed in the next

section.

4. L-scalino and other techniques.

Table 1 provides a direct comparison of three

multivariate methods: L-scaling, the first principal

component, and what Raj (Ref. 4, 16-17) has called the

best weight function. (While each method generally

leads to a different solution, the symbols w and y are

used for all three methods to simplify notation.)

Several comments may be helpful.

(1) In all three methods, the scaled scores are

computed as y = Xw once the weights have been obtained.

(2) The L-scaling criterion was introduced in

section 2. It provides a least-squares fit between a

scaled score yt and each of its weighted components

6
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Xtkwk; there are potentially TxK such discrepancies.

Under principal components, a least-squares

approximation to the X matrix is the matrix yw', whose

rank is 1 and which gives a row-and-column

representation of X. Again, there are TxK

discrepancies. The best weight function minimizes the

variance of the scaled scores (whose means are zero);

this least-squares problem involves just T

discrepancies.

(3) The choice of a normalization rule is

important. If either L-scaling or the best weight

function is minimized on the unit sphere (w'w = 1)

rather than on the plane (w'e = 1), the

principal-components solution is obtained. In

particular, the weights that minimize on the unit

sphere

w'(I - R/K)w

= w'w - w'Rw/K

= 1 - w'Rw/K (13)

evidently minimize -w'Rw or equivalently maximize w'Rw.

(4) Both L-scaling and principal components provide

solutions as long as the rank of R exceeds 1. The bcsc't

weight function, however, requires the inverse of R,

which implies that the rank of R = K 5 T . This is a

limitation. For example, if 10 cities were to be ranked

on the basis of 15 quality-of-life variables (T = 10,

K = 15), the best weight method could not be used to
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obtain a scaled score for each city.

(5) If all correlations are positive, L-scaling and

the first principal component have positive weights;

but the best weight function may have zero or negative

weights. In some applications, negative weights may

make the results hard to interpret.

(6) As long as the scaling problem is subject only

to a normalizing constraint, computer solutions for all

three methods are straightforward. L-scaling and the

best weight function require inversion of a KxK matrix,

while the weights for the first principal-component are

calculated by raising R to a sufficiently large power.

In some applications, however, it may be useful to

apply linear constraints (equations or inequalities).

For example, one might want to know how all the scaled

scores are affected when the third observation is

ranked a priori at least as high as the seventh:

y3 y7 or equivatantly E(X3k-X7k)wk 0. Under such

constraints, L-scaling and the best weight function

become exercises in quadratic programming, for which

algorithms are available. On the other hand, it would

be less straightforward to compute the first principal

component subject to a set of linear irlqualities.

(7) When the data matrix X may be contaminated by

outliers, a robust scaling technique is required. An

approach which retains all the algebraic properties of

L-scaling is the weighted-least-squares minimand (Ref.

5):
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EE(Ktkwk Yt/K)2Htk , (14)

where the weight Htk = 1/1Xtkwk - yt/K1 unless the

discrepancy is zero, in which case Htk = 0. Expression

(14) is therefore equivalent to:

E731Ktkwk Yt/Ki , (15)

subject to the T+1 constraints Y = Xe and w'e = 1. As a

multivariate version of a median, expression (15) is

relatively resiGtant to outliers. The solution may be

obtained by linear programming. If the dual form is

applied and the upper-bound constraints are handled

implicitly, the problem involves just TK+1 non-negative

variables and K explicit constraints [Wagner (Ref. 6)).

At the maximum of the dual linear program, the shadow

price of constraint k is the weight wk. The initial

simplex tableau is described in Table 4.

(8) Perhaps the simplest scaling method of all is row

means (y = Xe/K), where each weight is set equal to 1/K

without regard to the information contained in the

correlation matrix. When are equal weights optimal ?

All three methods summarized in Table 1 produce equal

weights if the correlations among the K variables

happen to be identical. The methods of Table 1 also

produce equal weights if the correlation matrix

exhibits a pattern like the example in Table 2, due to

Morrison (Ref. 7, 245-246). Unless R lisplays such

regularities, at least approximately, tho equal-weight

solution may provide a poor fit in comparison with the

11
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other methods discussed in this section.

5. A simulatLan_and some conolmsions.

As an hypothetical example, 100 observations on

three variables were drawn from a pseudorandom-number

generator (Ref. 8, seed = 8445). That is, T = 100 and K

= 3. Specifically, the data matrix was computed as:

X(t,l) = G(t,l)

X(t,2) = G(t,l) + G(t,2)

and X(t,3) = 4G(t,l) + G(t,3)/G(t,4) (16)

where t = 1, ... , 100. The G's are independent

standard normal variables. The first and second X

variables are therefore normally distributed.

However, the observations on the third X variable are

expected to contain outliers since the ratio

G(t,3)/G(t,4) is a Cauchy random number with

an indefinitely large variance.

Based on the standardized values of the three X

variables, Table 3 displays the empirical correlation

matrix for the samplq et 100 observations together with

the weignts for the three methods of Table 1 and for

the robust version of L-scaling in equation (15). The

four sets of weights differ notably from one another,

and it follows that the scaled scores (y) would also

differ. Under the robust version, the third X variable

has a large weight because its outliers are ignored.

In principle, a researcher should choose a scaling

method by proposing a model that explains how the

discrepancies arise. However, this inferential approach
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is impaired in cases where the X data do not satisfy

such requirements as multivariate normality and the

statiaLical independence of the observations. In

addition, sampling theory for a correlation matrix is

often intractable (Morrison (Ref. 7), 251-254]. In view

of these difficulties, a researcher may choose instead

to apply a kind of sensitivity analysis by comparing

the outcomes of sevral scaling methods, including

L-scaling which has been introduced in this paper.



Table 1. Comparison of 3 scaling techniques

L -scaling

First principal
component

Best weight function

Minimand
First-order
condition Normalization

E2((tkwk-Yt/K)2 (I R/K)w = e
= w'(I - R/K)w

22(Xtk-Ytwk)
2

= -w'Rw

Et(Y02
= Et(20tkwk)2
= w'Rw

Note: g is the largest eigenvalue of R.

- R)w = 0

Rw = e

Table 2. A patterned correlation matrix

1.00
0.70 1.00
0.60 0.40 1.00
0.40 0.60 0.70 1.00

Table 3. Weights for a correlation matrix

Correlation matrix

1.000
0.726 1.000
0.184 0.134 1.000

Weights L-scaling
W1
W2
W3

First
principal
component

Best weight
function

w'e = 1

w'w = 1

w'e = 1

Robust
L-scaling

0.368 0.419 0.230 0.234
0.363 0.413 0.313 0.231
0.269 0.168 0.457 0.535

Note: the weights for the first principal component
are renormalized from w'w=1 to w'e = 1 to facilitate
comparison with the other three sets.

14
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Table 4. Initial Simplex Tableau

The tableau may be characterized as follows:

o Number of variables (all non-negative) = TK + 1.

o Number of explicit constraints = K.

o Right-hand side of each constraint is 0.

o Maximize variable number TK + 1.

o Upper bound of 2 on each variable except number TK + 1.

o For constraint 1:

Variable Left-hand side

number coefficient

1 (K-1)X11

2 -X
11

K

K+1

K+2

2K -X
21

TK+1 1

15
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Table 4 (concluded)

o For constraint 2:

Variable Left-hand side

number coefficient

1 -XI
2

2
(K-1)X12

K -X
12

K+1 -X
22

K+2 (K-1)X22

2K -X
22

Tif+1 1

,

o For remaining K-2 constraints, pattern of coefficients

analogous to constraints 1 and 2.

.#4 .....

4 6
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